Links inside Straight-Edge Embeddings of Complete Bipartite Graphs

نویسندگان

  • Richard Evan Schwartz
  • Seiya Negami
  • Ramin Naimi
چکیده

We prove the following theorem. Let L be any link. There is some N = NL such that every straight-edge embedding of the complete bipartite graph KN,N contains a finite union of cycles having link type L. This result builds on the ideas of S. Negami, who proved the analogous result for complete graphs. Most of our motivation for this paper is to give a simpler proof of Negami’s Theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of fink & straight conjecture on path-perfect complete bipartite graphs

We consider various edge disjoint partitions of complete bipartite graphs. One case is where we decompose the edge set into edge disjoint paths of increasing lengths. A graph G is path-perfect if there is a positive integer n such that the edge set E(G) of the graph G can be partitioned into paths of length 1, 2, 3, . . . , n. The main result of the paper is the proof of the conjecture of Fink ...

متن کامل

ar X iv : m at h / 06 11 62 6 v 1 [ m at h . C O ] 2 1 N ov 2 00 6 COUNTING LINKS IN COMPLETE GRAPHS

We find the minimal number of links in an embedding of any complete k-partite graph on 7 vertices (including K 7 , which has at least 21 links). We give either exact values or upper and lower bounds for the minimal number of links for all complete k-partite graphs on 8 vertices. We also look at larger complete bipartite graphs, and state a conjecture relating minimal linking embeddings with min...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Classification of nonorientable regular embeddings of complete bipartite graphs

A 2-cell embedding of a graph G into a closed (orientable or nonorientable) surface is called regular if its automorphism group acts regularly on the flags mutually incident vertex-edge-face triples. In this paper, we classify the regular embeddings of complete bipartite graphs Kn,n into nonorientable surfaces. Such a regular embedding of Kn,n exists only when n = 2p a1 1 p a2 2 · · · p ak k (a...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011